The use of point-of-care ultrasound (POCUS), including echocardiography in acute settings, has markedly expanded in recent years. Hemodynamic assessment using echocardiography in a Shock state is the most known one. It is gradually becoming unreplaceable due to its benefits, low costs, and negligible adverse effects. Serial exams following a structured approach are advisable. It provides insight into the cause and type of shock as well as the underlying hemodynamic derangement. Recent innovations mean echocardiography is easier to conduct and provides more informative data. Skilled acute physicians are better placed for such individualized management. In this review, we summarize the current application of echocardiography in shock and revisit some promising future modalities.
Roshdy A, Francisco N, Rendon A, et al. Critical care echo rounds: haemodynamic instability. Echo Res Pract 2014;1(1):D1–D8. DOI: 10.1530/ERP-14-0008
Roshdy A. POCUS in the assessment of shock. In Point of care Ultrasound in Critical Care, Flower L and Pradeep Madhivathanan (eds.). Scion Publishing, Banbury, U.K. 2022, pp. 271–288.
Giustiniano E, Padua E, Negri K, et al. Echocardiography during prone-position mechanical ventilation in patients with COVID-19: a proposal for a new approach. J Am Soc Echocardiogr 2020;33(7):905–906. DOI: 10.1016/j.echo.2020.04.027
Flower L, Madhivathanan PR, Andorka M, et al. Getting the most from the subcostal view: The rescue window for intensivists. J Crit Care 2021;63:202–210. DOI: 10.1016/j.jcrc.2020.09.003
Ristic AD, Imazio M, Adler Y, et al. Triage strategy for urgent management of cardiac tamponade: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2014;35(34):2279–2284. DOI: 10.1093/eurheartj/ehu217
Faehnrich JA, Noone RB Jr, White WD, et al. Effects of positive-pressure ventilation, pericardial effusion, and cardiac tamponade on respiratory variation in transmitral flow velocities. J Cardiothorac Vasc Anesth 2003;17(1):45–50. DOI: 10.1053/jcan.2003.9
Vieillard-Baron A, Prin S, Chergui K, et al. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med 2002;166(10):1310–1319. DOI: 10.1164/rccm.200202-146CC
Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23(7):685–713. DOI: 10.1016/j.echo.2010.05.010
Roshdy A, Karapanagiotidis GT, Sarsam MA, et al. Acute obstruction of a mechanical aortic valve in a young woman: case report and review of the literature. Echo Res Pract 2015;2(1):K1–K5. DOI: 10.1530/ERP-14-0068
Mowat DH, Haites NE, Rawles JM. Aortic blood velocity measurement in healthy adults using a simple ultrasound technique. Cardiovasc Res 1983;17(2):75–80. DOI: 10.1093/cvr/17.2.75
Cecconi M, Hofer C, Teboul JL, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med 2015;41(9):1529–1537. DOI: 10.1007/s00134-015-3850-x.
Toscani L, Aya HD, Antonakaki D, et al. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. Crit Care 2017;21(1):207. DOI: 10.1186/s13054-017-1796-9
Furtado S, Reis L. Inferior vena cava evaluation in fluid therapy decision making in intensive care: practical implications. Rev Bras Ter Intensiva 2019;31(2):240–247. DOI: 10.5935/0103-507X.20190039
Monnet X, Shi R, Teboul JL. Prediction of fluid responsiveness. What's new? Ann Intensive Care 2022;12(1):46. DOI: 10.1186/s13613-022-01022-8
Upadhyay V, Malviya D, Nath SS, et al. Comparison of superior vena cava and inferior vena cava diameter changes by echocardiography in predicting fluid responsiveness in mechanically ventilated patients. Anesth Essays Res 2020;14(3):441–447. DOI: 10.4103/aer.AER_1_21
Enghard P, Rademacher S, Nee J, et al. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care 2015;19(1):36. DOI: 10.1186/s13054-015-0756-5
Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J 2016;37(27):2097–2104. DOI: 10.1093/eurheartj/ehw164
Beaubien-Souligny W, Rola P, Haycock K, et al. Quantifying systemic congestion with point-of-care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J 2020;12(1):16. DOI: 10.1186/s13089-020-00163-w
Roshdy A. Echodynamics: interpretation, limitations, and clinical integration! J Intensive Care Med 2018;33(8):439–446. DOI: 10.1177/0885066617734151
Boussuges A, Blanc P, Molenat F, et al. Evaluation of left ventricular filling pressure by transthoracic Doppler echocardiography in the intensive care unit. Crit Care Med 2002;30(2):362–367. DOI: 10.1097/00003246-200202000-00016
Dokainish H, Zoghbi WA, Lakkis NM, et al. Optimal noninvasive assessment of left ventricular filling pressures: a comparison of tissue Doppler echocardiography and B-type natriuretic peptide in patients with pulmonary artery catheters. Circulation 2004;109(20):2432–2439. DOI: 10.1161/01.CIR.0000127882.58426.7A
Sanfilippo F, Corredor C, Fletcher N, et al. Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med 2015;41(6):1004–1013. DOI: 10.1007/s00134-015-3748-7
Harkness A, Ring L, Augustine DX, et al. Education Committee of the British Society of Echocardiography. Normal reference intervals for cardiac dimensions and function for use in echocardiographic practice: a guideline from the British Society of Echocardiography. Echo Res Pract 2020;7(1):X1. DOI: 10.1530/ERP-19-0050
Kurzyna M, Torbicki A, Pruszczyk P, et al. Disturbed right ventricular ejection pattern as a new Doppler echocardiographic sign of acute pulmonary embolism. Am J Cardiol 2002;90(5):507–511. DOI: 10.1016/s0002-9149(02)02523-7
McConnell MV, Solomon SD, Rayan ME, et al. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol 1996;78(4):469–473. DOI: 10.1016/s0002-9149(96)00339-6
Fields JM, Davis J, Girson L, et al. Transthoracic echocardiography for diagnosing pulmonary embolism: a systematic review and meta-analysis. J Am Soc Echocardiogr 2017;30(7):714–723.e4. DOI: 10.1016/j.echo.2017.03.004
Flower L, Parulekar P, Roshdy A. The challenges of defining right ventricular dysfunction in critical illness. Anaesthesia 2022;77(11):1307–1308. DOI: 10.1111/anae.15794.
Perera P, Mailhot T, Riley D, et al. The RUSH exam 2012: rapid ultrasound in shock in the evaluation of the critically ill patient. Emerg Med Clin North Am 2010;28(1):29–56. DOI: 10.1016/j.emc.2009.09.010
Atkinson P, Bowra J, Milne J, et al. International Federation for Emergency Medicine consensus statement: sonography in hypotension and cardiac arrest (SHoC): an international consensus on the use of point of care ultrasound for undifferentiated hypotension and during cardiac arrest. CJEM 2017;19(6):459–470. DOI: 10.1017/cem.2016.394
Ahmed M, Roshdy A, Sharma R, et al. Sudden cardiac arrest and coexisting mitral valve prolapse: a case report and literature review. Echo Res Pract 2016;3(1):D1–D8. DOI: 10.1530/ERP-15-0020
Wu J, Chen DC. Contrast-enhanced ultrasonography: a promising method for blood flow and perfusion evaluation in critically ill patients. Chin Med J (Engl) 2018;131(10):1135–1137. DOI: 10.4103/0366-6999.231527.
Emanuel AL, Meijer RI, van Poelgeest E, et al. Contrast-enhanced ultrasound for quantification of tissue perfusion in humans. Microcirculation 2020;27(1):e12588. DOI: 10.1111/micc.12588
Alsharqi M, Woodward WJ, Mumith JA, et al. Artificial intelligence and echocardiography. Echo Res Pract 2018;5(4):R115–R125. DOI: 10.1530/ERP-18-0056
Knackstedt C, Bekkers SC, Schummers G, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol 2015;66(13):1456–1466. DOI: 10.1016/j.jacc.2015.07.052
Ehrman RR, Bredell BX, Harrison NE, et al. Increasing illness severity is associated with global myocardial dysfunction in the first 24 hours of sepsis admission. Ultrasound J 2022;14(1):32. DOI: 10.1186/s13089-022-00282-6.
Sanfilippo F, Corredor C, Fletcher N, et al. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis. Crit Care 2018;22(1):183. DOI: 10.1186/s13054-018-2113-y
Butnar A, Wong A, Ho S, Malbrain M. The Future of Critical Care Ultrasound. ICU Management & Practice 2019/2020. https://healthmanagement.org/c/icu/IssueArticle/the-future-of-critical-care-ultrasound-ccus as accessed 21 January 2023.